当您需要进行长度测试时您必须依照精度要求选择合适的测量仪器或技术以得到长度测量的结果。举例来说您需要测量一小段金属丝的长度根据使用的要求您知道对该金属丝的长度测量到毫米级就足够了。这一测量的误差或者说真实的长度值与测量值之间的偏差必须要小于1 毫米。一把带有精密的毫米刻度的尺子就可以在要求的精度内完成测试。另一方面如有使用的要求对这段金属丝进行更精确的长度测试比如说需要到五千分之一毫米的级别我们就必须选择精度高很多的测量工具——测微仪来完成测试工作了。
这同测试电信号是一样。
现场认证已安装的数据链路
ISO/IEC11801:2002 和TIA/EIA-568-B 等标准对于现场认证已安装的数据链路的方法有具体的描述和规定。这些标准定义了不同性能指标的布线系统。链路中的元件是以“类”来描述的例如5 类6 类或7 类等。类别的数字越大性能越高(当然价格也就越贵)。
现场认证过程定义了一系列的测试参数和它们的通过/失败条件以说明已安装的链路是否满足某类或某级的链路要求。现场认证主要是基于对信噪比的分析。换句话讲您要测量在链路终点接收到的信号强度同时您还要测量在信号到达链路终点的接收器的输入端前会影响所传输的信号的干扰因素:噪声或是干扰。这些干扰是要尽力避免的不能超过某个水平。链路性能的高低实际就是取决于在链路中所允许的会影响信号传输的最高干扰级别。第二点还需要在信号所需要的频率范围内进行测量。测试标准规定的D 级链路的性能——使用5 类元件组成的——从1MHz 至100MHzE 级链路(6 类元件)是从1MHz 至250MHz 而F 级链路(7 类元件)需要高达600NHz 。这个频率也是该级别链路所能够支持的最高带宽。随着链路性能的提高我们需要测量的干扰信号也就越来越微弱。因此对用于认证的测试仪的精度要求必须随着测量微弱信号时所要求的精度相应提高才能满足高性能标准的规定。
链路测量
这些标准在定义了链路和元件性能水平的同时也定义了现场认证测试仪的性能。II 级精度是测量由5类元件组成的D 级链路的最低精度要求。“II 级”测试仪的频率范围必须要同5 类链路必测参数的频率范围相匹配,也就是从1MHz 到100MHz 。II 级精度后来因为超5 类布线系统的补充要求而修订为IIe 级精度。随着6 类元件和6 类/E 级链路的推出又定义III 级精度。同II 级或IIe 级相比III 级精度的要求在两个方面有所提高:(1) 所需测量的干扰信号如近端串扰(NEXT)远端串扰(FEXT) 和回波损耗(Return Loss)等的幅值更低;同时(2)所需测试的频率范围要扩展至250MHz.
ISO/IEC 标准定义了7 类元件以构成F 级链路。需要测量的干扰信号比6 类/E 级的更微弱而且对于F 级链路的测试频率要求扩展至600MHz 。对于这些必测参数,要在扩展了的频率范围内有足够的精度标准计划定义IV 级精度。足以认证F 级链路所需精度的技术要求还在研究之中其结果也就是对于IV级精度的要求已列入IEC 61935-1 标准的第2版草案中。这些指标预期在今年晚些时候会被批准。
III 级精度与IV 级精度的对比
表1 列出的是III 级精度和IV 级精度的现场测试仪对残余NEXT 特性的允许值。残余NEXT 是指在测试仪输入端没有连接任何电缆时测量到的测试仪自身的串扰值。它是测量近端串扰中底线噪声的一部分。残余NEXT 是影响测试仪精度水平的众多因素之一。对于基线和永久链路指标IV 级精度的测试仪在100MHz 时残余NEXT 的最差值比III 级精度所允许的要小18 倍。以μV( 微伏或百万分之一伏特)表示的残余NEXT 的数据清楚地说明了这一比例。根据前面讲到的对IV 级精度的要求等同于要比III 级精度的测试仪所能测试的最微弱的信号还要小18 倍。
表1III 级精度和IV 级精度的对比
表1 还引出了另一个迄今没有讨论的话题。标准既定义了基本仪器(也称为基线精度)的精度也定义了仪器带有为测试永久链路和通道的适配器后的精度。一些厂家仅仅会提及基线精度。在实际应用中这是一个误导性的概念因为无论是测试永久链路还是通道,设备点检仪测试仪总是要与测试适配器一起工作的。标准确实计划在定义基线精度的同时为这些在测试实际链路时所必须的适配器制定严格的性能要求。
结论
标准中定义的在规定的频率范围内的最低精度要求通常以公式表示单位是dB。这些公式是为专家写的。实际上就像本文中所描述的在一个确定的频率点上比较一些参数的绝对数值可能更容易理解。